Изложение в этом разделе следует работам [7.2, 7.5, 7.6]. Постановка обычной задачи регрессии (или мозаичной регрессии) исходит из гипотезы о том, что одни характеристики объектов могут быть функциями других и эти функции одни и те же для всех объектов (или соответственно классов объектов).
Транспонируем таблицу данных (поменяем местами слова "объект" и "признак"). Рассмотрим гипотезу от том, что значения признака одного объекта могут быть функциями значений того же признака других объектов и эти функции одни и те же для всех признаков (или классов признаков). Получаем формально те же задачи регрессии (транспонированные задачи регрессии). Есть, однако, два содержательных отличия транспонированных задач от исходных:
Требование инвариантности к смене шкал приводит к специальным ограничениям на вид функций регрессии, а недостаточность количества признаков (в сравнении с числом объектов) для построения транспонированной регрессии вынуждает нас для каждого объекта искать небольшую группу, по свойствам которых можно восстановить характеристики данного.
Задача построения таких групп объектов была чрезвычайно популярна в химии перед открытием Менделеевым периодического закона (1871 г.).