Структура сети
Предполагаем, что сеть имеет слоистую структуру. Это самоограничение позволит несколько сократить изложение, но не влияет на общность рассмотрения - исследование любой сети может быть формально сведено к изучению слоистых сетей.
Сеть слоистой структуры состоит из слоев стандартных нейронов, связанных между собой синапсами с весами, полученными при обучении. Причем сигналы передаются только в одном направлении, с предыдущего слоя на следующий. Под стандартным нейроном [6.1, 6.2] понимается набор элементов, состоящий из адаптивного сумматора, нелинейного преобразователя и точки ветвления ( рис. 6.1). Точка ветвления - это элемент, посылающий выходной сигнал нелинейного преобразователя на вход нескольких стандартных нейронов следующего слоя.
Рис. 6.1. Стандартный нейрон
Так как мы имеем дело с сетями слоистой структуры, состоящими из слоев стандартных нейронов, то выходные сигналы одного слоя являются входными сигналами другого слоя. В свою очередь, внутри самого стандартного нейрона выходной сигнал одного элемента (например, сумматора) является входным сигналом другого элемента (например, нелинейного преобразователя). Таким образом, можно проследить, начиная с выходных сигналов сети, от какого элемента сети пришел сигнал к данному элементу.
Стандартный нейрон является типичным участком любой нейронной сети. Поэтому достаточно выяснить, как вычисляются допустимые погрешности для элементов стандартного нейрона. В результате получим возможность вычислить допустимые погрешности для любого участка сети, двигаясь по сети от нейрона к нейрону.