Нейроинформатика

       

В последнее время сильно возрастает


Отдел медицинской нейроинформатики, КрасГМАД.А.Россиев
В последнее время сильно возрастает значение информационного обеспечения самых разных медицинских технологий. Оно становится критическим фактором развития практически во всех областях знания, поэтому разработка и внедрение информационных систем является на сегодняшний день одной из самых актуальных задач.
Анализ применения персональных ЭВМ в медицинских учреждениях показывает, что наибольшее использование компьютеров идет для обработки текстовой документации, хранения и обработки баз данных, ведения статистики и финансовых расчетов. Отдельный парк ЭВМ используется совместно с различными диагностическими и лечебными приборами.
В большинстве этих областей использования ЭВМ применяют стандартное программное обеспечение - текстовые редакторы, системы управления базами данных, статистические пакеты и др. Однако некоторые из важнейших участков лечебно-диагностических технологий практически не используют возможности ЭВМ. Прежде всего это диагностика, назначение лечебных мероприятий, прогнозирование течения заболеваний и их исходов.
Причины этого носят чрезвычайно сложный характер и постоянно дискутируются. Основные из них - недостаточно развитая техническая база, низкая компьютерная грамотность участников технологий. Большое значение имеет психологический аспект применения ЭВМ. Это серьезная причина, связанная с характером работы врача. Врач является исследователем, и его работа носит творческий характер, однако он несет прямую ответственность за результат своей деятельности. Принимая решение о диагнозе или лечении, он опирается на знания и опыт, свои собственные и коллег, являющихся для него авторитетом. Очень важно при этом обоснование решения, если оно подсказывается со стороны. Результат, подсказанный компьютерной программой, работающей по алгоритму, созданному другим человеком, как показывает практика, во многом лишает исследователя творческой инициативы. Навязанное таким образом решение, даже будучи достоверным, психологически подвергается серьезному сомнению.


Существенную роль играют также особенности медико-биологической информации. Большинство медицинских данных имеют описательный характер, выражаются с помощью формализмов, подверженных крайней вариабельности. Данные, даже выражаемые с помощью чисел, также в большинстве случаев не могут быть хорошо упорядочены и классифицируемы, т.к. изменяются в зависимости от клинических традиций различных школ, геосоциальных особенностей регионов и даже отдельных учреждений, а также от времени.
Все задачи, решаемые человеком, с позиций нейроинформационных технологий можно условно классифицировать на две группы.
  1. Задачи, имеющие известный и определенный набор условий, на основании которого необходимо получить четкий, точный, недвусмысленный ответ по известному и определенному алгоритму.
  2. Задачи, в которых не представляется возможным учесть все реально имеющиеся условия, от которых зависит ответ, а можно лишь выделить приблизительный набор наиболее важных условий. Так как часть условий при этом не учитывается, ответ носит неточный, приблизительный характер, а алгоритм нахождения ответа не может быть выписан точно.

Для решения задач первой группы с большим успехом можно использовать традиционные компьютерные программы. Как бы ни был сложен алгоритм, ограниченность набора условий (входных параметров) дает возможность составления алгоритма решения и написания конкретной программы, решающей данную задачу. Нет никакого смысла в использовании нейроинформационных технологий для решения таких задач, так как в этом случае нейросетевые методы будут априорно хуже решать такие задачи. Единственным исключением является случай, когда алгоритм вычисления ответа слишком большой и громоздкий и время на решение конкретной задачи по этому алгоритму не удовлетворяет практическим требованиям; кроме того, при получении ответа не требуется абсолютная точность.
При решении задач второй группы применение нейротехнологии оправдывает себя по всем параметрам, при выполнении, однако, двух условий: во-первых, наличия универсального типа архитектуры и единого универсального алгоритма обучения (отсутствие необходимости в их разработке для каждого типа задач), во-вторых, наличия примеров (предыстории, фиксированного опыта), на основании которых производится обучение нейронных сетей.


При выполнении этих условий скорость создания экспертных систем возрастает в десятки раз, и соответственно снижается их стоимость.
Практически вся медицинская и биологическая наука состоит именно из задач, относящихся ко второй группе, и в большинстве этих задач достаточно легко набрать необходимое количество примеров для выполнения второго условия. Это задачи диагностики, дифференциальной диагностика, прогнозирования, выбора стратегии и тактики лечения и др. Медицинские задачи практически всегда имеют несколько способов решения и "нечеткий" характер ответа, совпадающий со способом выдачи результата нейронными сетями.
Разработка математических методов решения медико-биологических задач ведется уже не одну сотню лет. Учеными предложено огромное количество способов проверки гипотез и продукции выводов. В 60-е годы были разработаны методы анализа, получившие некоторое распространение и вызвавшие волну публикаций. Общим признаком, объединяющим их, является наличие явных алгоритмов принятия решений. "Диагностический алгоритм включает в себя совокупность правил, определяющих порядок переработки медицинской информации с целью постановки диагноза" [5.1]. Несмотря на то, что наиболее популярные методы до сих пор активно используются в теоретической биологии и медицине, в клинической практике они не нашли широкого применения. Это связано, во-первых, с тем, что методы, ориентированные на обработку групповых данных, слабо применимы к отдельным объектам, а во-вторых, с особенностями самой медико-биологической информации. Решения в медицинских и биологических задачах зависят от большого количества неодинаковых по значимости факторов. Поэтому, даже если удается выстроить правила вывода, связывающие условия задачи с решением, метод, как правило, хорошо работает только на той группе объектов, на которой производились исследования. Естественно, создать универсальный алгоритм невозможно, и при использовании метода для другой подобной группы объектов его почти всегда приходится полностью переконструировать практически заново.


Многолетние исследования, проводимые с самыми различными явными алгоритмами, показали, что медицинские задачи, имеющие неявный характер, решаются явными методами с точностью и удобством, совершенно недостаточными для широкого практического использования в конкретных задачах диагностики, прогнозирования и принятия решений [5.2].
Поиски и изучение неявных алгоритмов, позволяющих автоматически накапливать и затем использовать опыт при обучении [5.3], продолжаются уже более 100 лет [5.4]. Однако первые серьезные попытки создания нейронных сетей были сделаны в 40-50-х годах, когда У.Маккалох и У.Питтс выдвинули основные положения теории работы головного мозга. С появлением дешевых ЭВМ произошел резкий скачок в этой области, которая в начале 80-х годов сформировалась в целую науку - нейроинформатику [5.5, 5.6, 5.7].
Неявные задачи медицины и биологии явились идеальным полем для применения нейросетевых технологий, и именно в этой области наблюдается наиболее яркий практический успех нейроинформационных методов.
Рассмотрим несколько наиболее интересных нейросетевых приложений для биологии и медицины, созданных различными авторами и школами.
Наибольший интерес для практического здравоохранения представляют системы для диагностики и дифференциальной диагностики заболеваний. При этом для принятия решений могут использоваться самые разнообразные данные - анамнез, клинический осмотр (создаются экспертные системы диагностики, ограничивающиеся только этим набором [5.8]), результаты лабораторных тестов и сложных функциональных методов. Список областей медицины, в которых начали применяться новые технологии, чрезвычайно обширен и продолжает расти.
Одним из наиболее интенсивно развиваемых направлений является применение нейросетей в кардиологии.
В Италии разработана чрезвычайно интересная экспертная система для диагностики и лечения артериальной гипертонии [5.9]. Система включает в себя три нейросетевых модуля, причем ответы одних являются входными данными для других. В начале исследования больному проводят измерение систолического и диастолического давления каждые полчаса в течение суток.


Данные за каждый час усредняются. Таким образом, образуется массив из 48 величин артериального давления (по 24 для систолического и диастолического). После этого первый модуль, состоящий из двух трехслойных нейросетей (в каждой из которых 2 входных, 4 "скрытых" и 24 выходных нейрона), на основании данных о поле и возрасте больного рассчитывает аналогичные "должные" величины и сравнивают их с реальными. Параллельно второй модуль (двухслойная нейросеть с 17 входными и 4 выходными нейронами) на основании клинических данных (симптоматика, анамнез) рассчитывает возможные сочетания гипотензивных лекарственных средств, которые могут быть использованы для лечения данного больного. Данные, снятые с выходов обоих модулей, вместе с клиническими данными подаются на вход последнего, третьего модуля (6-слойная нейросеть). Этот модуль оперирует 4 группами гипотензивных препаратов (диуретики, бетаадреноблокаторы, ингибиторы ангиотензина, блокаторы кальциевых каналов). Цель - назначить суточный (почасовой) график приема больным лекарств каждой (если требуется) из 4 групп. Поэтому этот модуль имеет 96 выходных нейронов (4 препарата х 24 часа). С каждого выходного нейрона снимается доза, соответствующая одному препарату, назначаемому на данный час суток. Естественно, что в реальной ситуации большинство выходных данных равны нулю. Таким образом, создается оптимальная для пациента схема лечения гипертонии. Нужно отметить, что система учитывает некоторые особенности приема препаратов больными, например, затруднение приема препаратов ночью (назначает ночной прием только в крайних случаях), запрет на назначение мочегонных лекарств на ночь.
Отличительной чертой системы является возможность пользователя (врача) передавать нейронной сети свой опыт. Для этого создателями программы предусмотрен специальный блок, который выводит на экран компьютера суточные кривые артериального давления и предлагает врачу ввести в компьютер суточную схему приема гипотензивных препаратов в необходимых, по его мнению, дозах.




Введенный пример помещается в базу данных. В любое время можно инициировать доучивание нейронных сетей с новыми примерами.
В одной из работ приводится метод выявления атеросклеротических бляшек в артериях [5.10]. Для этого применяется нейросеть, интерпретирующая флюоресцентные спектры, получаемые при исследовании тканей с помощью лазера.
Аналогичным образом проводится диагностика заболеваний периферических сосудов [5.11], например, определение форм артериита [5.12].
Проводится комплекс исследований по использованию нейросетей для диагностики инфаркта миокарда [5.13,5.14,5.15]. Автор приводит данные по чувствительности (77,7%) и специфичности (97,2%) нейросетевого теста. В работе [5.16], кроме того, с помощью нейронной сети устанавливали диагностическую значимость клинических параметров при диагностике инфаркта миокарда.
Нейросетевой анализ акустических сигналов позволяет проводить диагностику клапанных шумов сердца [5.17], и оценивать систолическую и диастолическую фазы сердечного сокращения с постановкой предварительного диагноза [5.18].
Нейросети используются терапевтами для диагностики заболеваний печени по лабораторным данным исследования функций печени [5.19]; дифференциальной диагностики заболеваний печени [5.20] и желчного пузыря по УЗИ [5.21].
Нейропрограммы могут с успехом работать с медицинскими данными, относящимися к субъективным категориям, например, в психиатрии [5.22]. Оценка субъективных данных дает возможность распознавания психических симптомов и диагностики и изучения некоторых психиатрических симптомокомплексов.
Актуальная проблема диагностики злокачественных новообразований, возможно, получит новый уровень осмысления с началом применения нейроалгоритмов. Так, в работе [5.23] показана 80%-я точность ранней диагностики меланом кожи - одного из самых злокачественных заболеваний.
Одним из серьезных направлений применения нейронных сетей является интерпретация медицинских данных. В последние годы идет бурное развитие новых средств диагностики и лечения.


При этом наблюдается "вторая волна" изучения и использования древних, старинных методов, и, наоборот, применение последних технических новшеств. Нередко и те и другие методы при использовании предоставляют врачу массу самых разнообразных данных. При этом встает проблема их грамотной и корректной интерпретации. Поиск глубинных закономерностей между получаемыми данными и патологическими процессами начинает отставать от разработки все новых и новых методов, поэтому применение для этой цели нейросетей может оказаться чрезвычайно выгодным.
В одной из старинных методик диагностики по пульсу используются 14 характеристик пульса, измеряемых с нескольких точек. Распознавание и интерпретация данных требует огромного опыта врача, практически невозможного в современных условиях. Нейросеть была применена для "узкой" диагностики только по одной из точек [5.24], позволяющей оценивать состояние левой почки. Пульс считывается специальным датчиком, совмещенным с микрофоном. Полученная пульсовая кривая (сфигмограмма) передается в компьютер. Вначале программа анализирует несколько пульсовых волн и выстраивает "среднюю" волну. После этого по 5 точкам этой волны нейронная сеть оценивает состояние левой почки.
Классической проблемой в кардиологии является интерпретация электрокардиограмм, требующая значительного опыта врача. Сотрудники Университета Глазго (Великобритания) ведут исследования по применению нейросетей для ЭКГ-диагностики инфарктов миокарда [5.25]. Входными данными для сетей являются избранные параметры 12-канальной электрокардиограммы и 12-канальной векторкардиограммы (длины зубцов, расстояния между зубцами). Исследователи обучили огромное количество нейросетей (167 сетей для диагностики инфаркта миокарда передней стенки и 139 сетей для инфаркта нижней стенки) на массиве данных из 360 электрокардиограмм. Обученные сети затем тестировали отдельную выборку с заранее известными ответами (493 случая). Одновременно для получения отдельной серии ответов на тестируемой выборке был использован логический метод (с заранее заданным алгоритмом).


Затем сравнивались результаты тестирования выборки лучшими нейросетями и с помощью логического алгоритма. Сравнение показало, что во многих случаях чувствительность и специфичность нейросетевого теста оказались выше, чем у логического метода. Авторы делают справедливый вывод, что в случаях, когда логический алгоритм решения задачи все-таки можно выстроить, разумно комбинировать в экспертных системах оба подхода.
Интерпретация ЭКГ с помощью нейросетей была применена для диагностики злокачественных желудочковых аритмий [5.26]. Трехслойная сеть с 230 входными синапсами была обучена на 190 пациентов (114 с хронической сердечной недостаточностью и 34 с дилятационной миокардиопатией) различать наличие (у 71 пациента) и отсутствие (у 119 пациентов) желудочковой тахикардии. Результаты тестирования сравнивались с логическим методом интерпретации данных. Показано, что нейросетевой тест обладает большей чувствительностью (73% по сравнению с 70 для логического метода) и специфичностью (83 и 59%).


Одной из самых сложных задач для нейросетей в практической медицине является обработка и распознавание сложных образов, например рентгенограмм. В работе [5.28] описывается экспертная система интерпретации рентгенограмм груди у новорожденных с выбором одного и более диагнозов из 12.
Созданы нейросетевые экспертные системы для классификации опухолей молочной железы (определения, доброкачественная опухоль, или злокачественная) по данным маммографии (сканограмма молочной железы) [5.29]. По данным, которые приводят авторы, точность такого вывода до применения нейросети составляла не более 75%. При тестировании системы, нейросеть, анализирующая сканограмму, давала правильный ответ в 100% случаев. При тестировании изображение, получаемое в результате метода, представляется в виде матрицы точек размером 1024х1024 пиксела с 10-битовой шкалой яркости. Изображение подается на нейросеть, имеющую 2 входных, 80 "скрытых" и 2 выходных нейрона. При этом один из выходных нейронов "отвечает" за доброкачественную опухоль, другой за злокачественную. Диагноз определяется в зависимости от выходного нейрона, выдавшего больший по величине ответ. Столь высокий процент правильности распознавания, возможно, случаен, и объясняется недостаточным количеством примеров, использовавшихся при обучении и тестировании нейросети (по 10 примеров). Однако даже при такой малой обучающей выборке нейросеть выигрывала по сравнению с традиционным методом интерпретации сканограммы.
Несколько работ посвящены нейросетевой обработке лабораторных анализов и тестов. Приводится нейросетевой метод интерпретации лабораторных данных биохимического анализа крови [5.30]. В работе показаны преимущества нейронных сетей в сравнении с линейным дискриминантным анализом, которым параллельно обрабатывались данные.
Особое место среди нейросетевых экспертных систем занимают прогностические модели, применяемые, например, для прогнозирования исходов заболеваний.
В 1990 году американская фирма "Апачи Медикл Системз Инк." установила в реанимационном отделении одной из больниц штата Мичиган экспертную систему "Апачи - III " [5.31].


Ее цель - прогнозирование исхода заболевания у больных, находящихся в тяжелом состоянии. Для прогноза в компьютер необходимо ввести 27 параметров больного: первичный диагноз, симптомы, степень утраты сознания, наличие или отсутствие СПИД и других заболеваний. После этого система выдает вероятность выживания больного в диапазоне от 0 до 100 процентов. Ценность применения системы заключается в том, что она позволяет очень быстро оценить динамику изменения состояния больного, незаметную "на глаз". Например, можно получить ответ у системы до и после введения какого-либо лекарства, и, сравнив ответы, посмотреть, будет ли наблюдаться эффект от терапии. Без программы же изменение состояния иногда не удается обнаружить в течение нескольких дней. Тестирование показало, что 95% прогнозов, которые делает программа, сбываются с точностью до 3%, что значительно точнее, чем у лучших врачей. Необходимо отметить, что система была обучена на данных, взятых из историй болезней 17448 пациентов, лечившихся в 40 больницах штата в 1989 году. Очевидно, что если качество работы системы обеспечивается таким большим объемом выборки, возможности перенастройки системы не слишком велики. Идеология авторов, создавших эту систему, заключается в как можно большем охвате различных примеров и вариантов (сбор данных в 40 больницах), а не в возможности индивидуализации системы к конкретной клинике. Поэтому данная система не способна к подучиванию в процессе работы, опыт "зашит" в нее жестко. Это может быть существенным недостатком при установке программы в регионы, резко отличающиеся по социально-географическим условиям от тех, где проводилось обучение. Кроме того, огромный массив примеров для обучения повышает стоимость программы.
Прогностические нейросетевые модели могут использоваться в демографии и организации здравоохранения. Создана экспертная система, предсказывающая, умрет ли человек (в возрасте 55 лет и старше) в ближайшие 10 лет. Прогноз делается по результатам ответов на 18 вопросов анкеты.


В анкету включены такие вопросы, как раса, пол, возраст, вредные привычки, семейное положение, семейный доход. 4 из 18 вопросов выявляют индекс массы тела (body mass index ) в различные периоды жизни респондента. Индекс рассчитывается как отношение веса к квадрату роста (индекс более 27 кг/м считается тучностью). Повышенное внимание к этому показателю говорит о его значимости для прогноза жизни.
Развитие нейросетевых методов дает возможность их использования как инструмента научных исследований, с помощью которого можно изучать объекты и явления.
Судя по литературным данным, именно биологические научные исследования являются наиболее развиваемой областью применения нейросетей [5.32]. В последнее время биологи, знакомые с исследованиями в области нейроинформатики, приходят к выводу, что многие системы в живых организмах работают по принципам, сходным с алгоритмами нейронных сетей (или наоборот, нейронные сети работают по принципу биосистем). Таким образом, можно наблюдать "взаимное стимулирование" научных разработок в биологии и нейроинформатике. В работе [5.33] эндокринная система человека рассматривается как нейронная сеть из 30 элементов, которые представлены различными гормонами, взаимодействующими друг с другом с помощью прямых и обратных связей. Похожие исследования проводятся для иммунной системы [5.34].
Применение нейросетей для исследований в области нейрофизиологии строится на похожих принципах функционирования нейросетей и нервных структур живых организмов [5.35]. С помощью нейросети осуществлена попытка моделирования простейшей нервной системы [5.36].
Сделана попытка применения нейросети для классификации живых организмов [5.37]: нередко биологам, открывающим новые виды организмов, требуется определить, к какому виду (классу, типу) относится тот или иной представитель флоры или фауны (как правило, это касается микроорганизмов и растений). Система способна работать при отсутствии некоторых входных данных. Это является существенным преимуществом, так как часто при изучении живых объектов не всегда возможно получить всю необходимую информацию.


Нейросети использованы для идентификации человеческих хромосом. В биологических исследованиях, а также в криминалистике, часто бывает нужно определить, к какой из 23 имеющихся у человека пар хромосом относится выделенная хромосома. Точность существующих методов достигала 75 - 85%. Нейроклассификатор, на вход которого подается 30 признаков изображения хромосомы, определяет ответ с точностью, приближающейся к 100% [5.38].
Анализ публикаций о применении нейросетевых технологий в медицине показывает, что практически отсутствуют какие-либо методологии разработки нейросетевых медицинских систем, о чем свидетельствует как отсутствие работ такого профиля, так и огромное разнообразие подходов к нейросетевым алгоритмам обучения и архитектурам нейронных сетей. Это подтверждает то, что медицинская нейроинформатика как наука находится еще, в основном, на стадии накопления фактического материала.
Нужно отметить, что все медицинские приложения нейронных сетей для практического здравоохранения (диагностика, лечение, прогнозирование) созданы зарубежными авторами. Большинство отечественных работ направлено на исследование самих нейронных сетей и моделирование с их помощью некоторых биологических процессов (в основном, функций нервной системы).
Общая черта, объединяющая приведенные примеры - отсутствие единой универсальной технологии создания таких приложений. В публикуемых разработках используются самые разнообразные архитектуры и алгоритмы функционирования нейронных сетей. Это приводит к тому, что для почти для каждой задачи разрабатывается своя собственная архитектура, и часто - уникальный алгоритм или уникальная модификация уже существующего. С точки зрения практического применения такие экспертные системы почти не отличаются от традиционных программ принятия решений; предложены даже методы преобразования традиционных экспертных систем в нейросетевые [5.39]. Их разработка требует участия специалистов по нейроинформатике, а возможности конструирования пользователем практически отсутствуют.


Это делает такие системы чрезвычайно дорогими и не очень удобными для практического применения, поэтому в публикациях авторы в основном сравнивают качество работы нейросетевых алгоритмов и традиционных систем, работающих по правилам вывода.
Что же можно предложить взамен? Об этом и пойдет речь ниже. На протяжении нескольких лет красноярская научная группа "НейроКомп" [5.40], объединяющая ученых-математиков и медиков (Красноярский ВЦ СО РАН, КГТУ, Красноярская Медицинская Академия и ряд клинических учреждений города), разрабатывает технологии создания нейросетевых экспертных систем, которые применяются в практической медицине и биологии на обычных IBM-совместимых компьютерах [5.41, 5.42, 5.43].
Наиболее важным отличием предлагаемого подхода является возможность конструирования экспертных систем самим врачом-специалистом, который может передать нейронной сети свой индивидуальный опыт, опыт своих коллег, или обучать сеть на реальных данных, полученных путем наблюдений. При использовании разработанного нами пакета программ MultiNeuron 2.0 [5.44] для конструирования экспертной системы не требуется участие специалистов-математиков и программистов, что делает создаваемые системы более дешевыми, а главное, адаптированными к конечному пользователю.
Далее мы рассмотрим основные принципы и особенности этих технологий.
Все неалгоритмируемые или трудноалгоритмируемые задачи, решаемые нейронными сетями, можно классифицировать на два принципиально различающихся типа в зависимости от характера ответа - задачи классификации и задачи предикции.
Задачи классификации - основная и очень обширная группа медико-биологических задач. Ответом в них является класс - выбор одного варианта из заранее известного набора вариантов. Классификация может быть бинарной (элементарная классификация) - в этом случае набор возможных ответов состоит из двух вариантов (классов), и n-арной, где число классов более двух. Примерами бинарной классификации могут служить как объективные категории (пол человека - мужской или женский; характер опухоли - доброкачественный или злокачественный), так и субъективные категории (здоров человек или болен; наличие или отсутствие склонности к простудным заболеваниям).


В некоторых случаях не представляется возможным отнесение ответа задачи к объективной или субъективной категории, и это не имеет принципиального значения для обучения и работы нейросетевой экспертной системы.
Важной чертой задачи классификации по определению является возможность выбора одного и только одного варианта решения (класса). Поэтому постановка диагноза не может считаться одной классификационной задачей, т.к. у одного человека может одновременно присутствовать несколько патологий. В случае невозможности выбирать один вариант ответа (множественности выбора) задача подразделяется на подзадачи, каждая из которых представляет собой классификационную задачу.
Другой вид задач для нейросетей - задачи предикции, или предсказания. Они подразделяются на предсказание числа (одномерная предикция) и вектора (векторная предикция, более общий случай). Отличие от классификационных задач заключается в том, что ответ в задачах предикции может быть дробным и принимать любые значения на каком-либо интервале.
Векторная предикция предполагает, что ответ может быть представлен в виде нескольких независимых друг от друга чисел, образующих точку (или вектор) в многомерном пространстве, размерность которого равно количеству предсказываемых чисел. Число координат вектора называется при этом размерностью вектора ответа.
При решении реальных задач возможны различные комбинации предикции и классификации, и постановка задачи должна быть сделана самим предметным специалистом.

Содержание раздела