Автоматическое задание стратегии обучения.
Рассмотрим полностью автоматизированное задание стратегии построения решающего блока. Прежде всего определяется список подзадач, причем в каждой подзадаче определяется список обучающих параметров (он может быть общим для всех подзадач) и ответы. Затем задается, сколько нейросетей-экспертов будут решать каждую подзадачу (в простейшем случае - по одному). Далее определяется, будет ли проводится минимизация обучающих параметров. Если да, то можно задать произвольную минимизацию (нахождение минимально возможного для решения задачи списка параметров) или определяется набор параметров, который желательно оставить в списке или, наоборот, исключить из списка. Эту операцию можно провести отдельно для каждой подзадачи, для групп подзадач или для всей задачи в целом. Как дополнительный параметр, можно указать для каждой подзадачи контрольные выборки, на которых будут проверяться результаты обучения и требуемое качество обучения (в процентах правильно распознанных примеров (для классификаторов) или максимально допустимого отклонения (для предикторов). Это все, что должен сделать пользователь при автоматизированном построении решающего блока.
Непосредственно обучение проводится исходя из следующей стратегии. Обучение каждого эксперта в каждой подзадаче начинается с автоматической инициализации нейросети минимальной конфигурации (число нейронов - 2, плотность - 1, характеристика - 0,1, уровень надежности - 0,1 (для классификаторов), уровень отклонения для предикторов - требуемый или вычисленный исходя из характера значений ответа (в самом общем случае берется 1/3 минимальной разности между значениями ответа), время отклика - 2. Проводится обучение нейросети. Дальнейшие действия определяются результатом обучения. В случае успешного обучения проводится тест указанной контрольной выборки и в случае неудовлетворительного результата инициализируется новая сеть с увеличенной характеристикой (шаг увеличения - 0,1). При невозможности обучения инициализируется новая сеть с большим числом нейронов и плотностью.
Таким способом проводится обучение сетей по всем подзадачам. Обученные сети запоминаются. Если задана минимизация параметров, создаются рабочие копии обученных нейросетей и проводится вычисление значимости параметров для каждой сети, после чего следует минимизация параметров у каждой нейросети. Если требуется связанная минимизация (для нескольких нейросетей одновременно), окончательное отключение минимально значимого на данном этапе обучения параметра производится только после того, как все нейросети в связанной группе успешно обучились с исключением данного параметра. В процессе обучения могут автоматически применяться тактические методы (удар, изменение весов классов).
Исходя из приведенного описания, управление стратегией осуществляется по заранее заданному алгоритму. При необходимости пользователь может корректировать стратегию в процессе построения решающего блока на любом его этапе.