Логические функции, лежащие в основе мониторинга, преимущественно основаны на конъюнкции логических значений, утверждающих определенные диапазоны изменения параметров или показателей банков. В общем виде такая логическая функция имела бы вид
В [28] представлены такие показатели:
Фантазируя, мы могли бы развить эту систему показателей:
Такой простой вид логической функции, при переходе в область действительных переменных, говорит о достаточности однослойной нейросети (рис. 13.1), содержащей входной слой рецепторов и выходной слой, указывающий на результаты мониторинга.
При создании входного слоя необходимо учитывать не только текущие показатели, но и, например, динамику изменения рейтинга - рейтинга за прошлые периоды времени.
Выходной слой должен отражать не только рейтинг, но и экспертные рекомендации, а также другие решения и выводы.
Целесообразен простейший вид обучения (т.е. построения базы знаний, какой является наша сеть), который сопровождает концепцию создания нейросети "под задачу": непосредственное введение связей в совершенной нейросети оператором-исследователем "вручную" - от рецепторов к нейронам выходного слоя в соответствии с причинно-следственными связями. Тем самым сеть создается уже обученной.
Тогда передаточная функция должна быть тоже простейшей и основанной на суммировании величин возбуждения на входе нейрона, умноженных на вес связи (функция 5, лекция 9):