Вторым этапом выполнения методики, в силу специфики дальнейшего перехода от булевых переменных к достоверности событий, является дистрибутивное преобразование логических функций (12.1) к виду, который обеспечивает единственность вхождения всех переменных, участвующих в одном логическом выражении.
Это преобразование выполняется с помощью свойства дистрибутивности конъюнкции по отношению к дизъюнкции и дизъюнкции по отношению к конъюнкции, что составляет суть эквивалентного дистрибутивного преобразования (12.1).
Правила эквивалентных преобразований логических выражений широко известны. Однако указанная специфика свойства дистрибутивности гарантирует возможность с помощью последовательного вынесения за скобки обеспечить единственность вхождения каждой используемой переменной в отдельное логическое выражение.
Необходимость такого преобразования обусловлена заменой операций конъюнкции и дизъюнкции их приближенным "суррогатом" - передаточной функцией. Практически такая функция основана на суммировании (взвешенных) сигналов на входе нейрона. Тогда неоднократность вхождения одних и тех же сигналов становится недопустимой.
Однако приведенный ранее пример показывает, что не всегда подобное преобразование приводит к успеху. Тогда используется прием "размножения" решений, основанный на том, что логическое выражение разбивается на составляющие выражения, объединенные операцией дизъюнкции. Для всех таких выражений, входящих в описание вместо прежнего, определяется одно общее решение.
В результате таких преобразований каждое выражение логического описания в общем случае представляет собой скобочную запись с более чем одним уровнями вложенности.
Однако указанное свойство передаточной функции, сводящей две операции к одной, порождает возможность существенного упрощения нейросети, а именно, - сведение ее к однослойной.
Ранее было показано, что с помощью приема "размножения" решений такое сведение всегда возможно. Однако оно приводит к "дроблению" сети, к размножению путей получения одних и тех же решений, к перегрузке сети заданной фиксированной структуры на этапе ее обучения.