Логические нейронные сети


         

А теперь оживим эту структуру,


А теперь оживим эту структуру, заставим ее действовать, как, по-видимому, на логическом уровне действуют структуры нашего мозга.

Представим себе, что на месте каждого овала (потом - кружочка, на рис. 9.2 справа) действует нейроподобный элемент (просто нейрон). Нейроны входного слоя - рецепторы - приходят в возбужденное состояние (подобно сетчатке глаза) в соответствии с той ситуацией, которую мы задаем на входе системы. Например, мы хотим испытать ситуацию А1&В2. Тогда мы полагаем величины возбуждения нейронов А1 и В2 равными единице и записываем VA1 = VB2 = 1. При этом мы не забываем позаботиться о том, чтобы величины возбуждений нейронов А2 и В1 остались равными нулю.

Подчеркнем тот факт, что возбуждение нейронов-рецепторов осуществляется в результате ввода информации.

Для других нейронов, "принимающих" возбуждение в соответствии со стрелками, введем передаточную функцию, в результате выполнения которой формируется величина V возбуждения каждого нейрона. Для нашего случая, недолго думая (ибо существует большой произвол в выборе вида передаточной функции, на любой вкус), определим вид такой функции:



где i - индекс нейрона, "передающего" свое возбуждение данному нейрону, h - порог.

(Напомним: функция ?(x) заменяет отрицательную величину нулем, т.е.



В нашем случае стрелки со всей определенностью указывают направление передачи возбуждений.

Положим h = 1 и рассчитаем величины возбуждения нейронов выходного слоя R1-R4 для ситуации А1&В2:



Таким образом, "высветилось" то решение, которое необходимо принять, и старт линейным должен быть дан. Проверим, что так же работает наша сеть по всем эталонам, по которым мы ее обучили, проложив "проводочки" от каждой исходной посылки к следствию.

Теперь поэкспериментируем.

Задавая события по принципу "да - нет", "1 - 0", мы предполагали булевский тип исходных данных. А что, если поменять, обобщить тип исходных данных, допустив рассмотрение значений, интерпретируемых как достоверность? Или даже каких-то других взаимных оценок, которые используются часто в быту людьми, не сведущими в теории вероятности и не знакомых с понятием "полное множество событий"?


Содержание  Назад  Вперед